US009323583B2

a2 United States Patent 10) Patent No.: US 9,323,583 B2
Guillou et al. (45) Date of Patent: Apr. 26, 2016
(54) METHOD FOR ALLOWING DISTRIBUTED 6,996,615 Bl 2/2006 McGuire
RUNNING OF AN APPLICATION AND 595289 B2+ 112013 Nandlal ot al 709203
,595, andlall etal.
RELATED DEVICE AND INFERENCE 8,640,108 B2 1/2014 Bellows et al.
ENGINE 8,789,138 B2 7/2014 Reierson et al.
8,954,980 B2 2/2015 Stubbs et al.
(75) Inventors: Aurélien Guillou, Perros Guirec (FR); 2003/0061200 A1 3/2003 Hubert et al.
Hernit Bhatia, London (GB); Elise 2003/0084091 Al* 5/2003 Agarwallaetal. 709/203
Vennegues, Sainte-Agnés (FR); 2003/0084435 Al* 5/2003 Messeretal. 717/174
Nishantha Pelendage, L.ondon (GB) (Continued)
(73) Assignee: FRANCE TELECOM, Paris (FR) OTHER PUBLICATIONS
. E Search Report and Written Opinion dated Feb. 1, 2011 £
(*) Notice: Subject to any disclaimer, the term of this vropean searell Beportand Wrlienl Uptition daled e of
. . corresponding European Application No. 10306 153.7, filed Oct. 22,
patent is extended or adjusted under 35 2010
U.S.C. 154(b) by 337 days. ')
(Continued)
(21) Appl. No.: 13/278,772
290 Filed: Oct. 21. 2011 Primary Examiner — Yves Dalencourt
(22) Filed: o= Assistant Examiner — Sahera Halim
(65) Prior Publication Data (74) Attorney, Agent, or Firm — David D. Brush; Westman,
Champlin & Koehler, P.A.
US 2012/0102098 A1l Apr. 26, 2012
. 57 ABSTRACT
(30) Foreign Application Priority Data
Method for allowing distributed running of an application
Oct. 22,2010 (EP) wooviieiiiiceiic e 10306153 between a device and a server connected via a network. The
method includes the following steps carried out by the device:
(51) Int.CL obtaining a device profile including resource capacity char-
GO6F 15/16 (2006.01) acteristics of the device; obtaining an application profile
GOG6F 9/50 (2006.01) including resource consumption characteristics of the appli-
(52) US.CL cation; obtaining device metrics relating to real-time resource
CPC i, GO6F 9/5083 (2013.01) usage with respect to the device; obtaining offload rules defin-
(58) Field of Classification Search ing conditions under which an application is to be run at least
CPC e GO6F 9/5083 in part on a server and/or on a device, the conditions involving
USPC s 709/203 device resource capacity, application resource consumption
See application file for complete search history. and device real-time resource usage; and making a decision
. by an inference engine to run the application at least in part on
(56) References Cited

U.S. PATENT DOCUMENTS

6,385,636 Bl
6,658,657 Bl

5/2002 Suzuki
12/2003 Lueh

the server and/or on the device, by evaluating the offload rules
applied to the device profile, application profile and device
metrics.

15 Claims, 3 Drawing Sheets

102
/

107

110
106

101 p@

120

100 A

\ 113
. 116
@a——v——~
114
o] [oxs

118

Lr A_J AB

117

105

119 4/104

| 103

US 9,323,583 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0187998 Al
2005/0005006 Al
2006/0005193 Al*
2007/0150599 Al 6/2007 Neogi et al.

2008/0016508 Al 1/2008 Goto et al.

2008/0268828 Al* 10/2008 Nagarajaccceoone. 455/419

10/2003 Petit
1/2005 Chauffour et al.
1/2006 TIllowsky et al. 718/100

2009/0248828 Al* 10/2009 Gould et al. ... 709/207
2011/0110354 Al* 5/2011 Jiangetal. ... 370/338
2011/0167404 Al 7/2011 Liu et al.

2011/0238496 Al 9/2011 Gurbuxani et al.

2013/0263247 Al* 10/2013 Jungcketal. 726/13

OTHER PUBLICATIONS

European Search Report and Written Opinion dated Feb. 1, 2011 for
corresponding European Application No. 10 306 152.9, filed Oct. 22,
2010.

Dong Zhou et al., “Method Partitioning Runtime Customization of
Pervasive Programs Without Design-Time Application Knowledge”
Proceedings of the 23rd. International Conference on Distributed

Computing Systems. ICDCS 2003. Providence, RI, May 19-22,
2003; [International Conference in Distributed Computing Systems],
Los Alamitos, Ca: IEEE COMP. Soc. US, vol. CONF. 23, May 19,
2003, pp. 610-619, XP010642332.

Steffen Kern et al., “Towards Adaptive Migration Strategies for
Mobile Agents”, Jan. 1, 2006, Innovative Concepts for Autonomic
and Agent-Based Systems, Lecture Notes in Computer Science; Lec-
ture Notes in Artificial Intelligence; LNCS, Springer, Berlin, DE, pp.
334-345, XP019053523.

Joselli et al.: “Automatic Dynamic Task Distribution between CPU
and GPU for Real-Time Systems”, 2008 11th IEEE International
Conference on Computational Science and Engineering, 2008 IEEE,
p. 48-55.

“The Lex & Yacc Page” The LEX & YACC Page. Web. <<http://
dinosaur.compilertools.net/#overview>>.

Casse, H., M. Couzinier, and M. Strecker. “Introduction a Lex Et
Yace.” (2004/2005): Web. <<http://www.irit.fr/~Martin.Strecker/
Teaching/2004/M1__S8_IUP_ISI_ Traduction/intro__lex_ yacc.
pdf>>.

Nahrstedt et al., “QoS-aware resource management for distributed
multimedia applications”, 1998, IOS Press.

* cited by examiner

US 9,323,583 B2

Sheet 1 of 3

Apr. 26,2016

U.S. Patent

[DIA
€011
I <o1 Y [~o01
yOT 11—
0Z1
I b/ Ndd ™qp1
Q1L 001
WO Na
ST J 901
P11 oLl '
d - m_ el — / dVv
7 ~ \
011 LOT
€11 /J/ dd [>go1
111
7 %
ol Z11 40 ™601

US 9,323,583 B2

Sheet 2 of 3

Apr. 26,2016

U.S. Patent

peojjo peojo peojyo peojyo
oN abeioig vy Ndo

¢ DI

=l - Wdad

~$11

€1l

H0 dd dv

\ \ \
601 80T LOT

US 9,323,583 B2

Sheet 3 of 3

Apr. 26,2016

U.S. Patent

¢ DId

peojjjo
ON

ecl

pEOIUO
obeinyg

Vi

d

peojyo

Peojyo
ndd

Jd

74!

US 9,323,583 B2

1
METHOD FOR ALLOWING DISTRIBUTED
RUNNING OF AN APPLICATION AND
RELATED DEVICE AND INFERENCE
ENGINE

CROSS-REFERENCE TO RELATED
APPLICATIONS

None.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

None.
THE NAMES OF PARTIES TO A JOINT
RESEARCH AGREEMENT
None.
FIELD OF THE DISCLOSURE

The present disclosure relates to computer software appli-
cation running or execution.

BACKGROUND OF THE DISCLOSURE

It is common to run an application on a single device. The
latter is typically a device owned by a user who requests
running of the application.

Some devices however, such as some mobile devices or
others, may have limited resources, either permanently or
occasionally.

As a non-limiting example, it appears that sometimes such
devices are overloaded in terms of processing resource (e.g.
CPU) and/or memory (e.g. RAM). This resource overload
momentum may happen for instance when too many appli-
cations are running at the same time on the same device. Then,
even if applications are built with dedicated compilers, the
device operating system (OS) may not be able to cope with
this overload. This could require to suspend/resume some of
the applications based on system scheduler priorities. By
doing so, the application quality of service (QoS) is impacted,
in particular as far as the amount of time the application needs
to provide a specific service is concerned.

SUMMARY

In order to improve this situation, an exemplary embodi-
ment of the disclosure relates to a method for allowing dis-
tributed running of an application between a device and a
server connected via a network. The method comprises the
following steps carried out by the device:

obtaining a device profile including resource capacity char-

acteristics of said device;

obtaining an application profile including resource con-

sumption characteristics of said application;

obtaining device metrics relating to real-time resource

usage with respect to said device;

obtaining offload rules defining conditions under which an

application is to be run at least in part on a server and/or
on a device, the conditions involving device resource
capacity, application resource consumption and device
real-time resource usage;

making a decision by means of an inference engine to run

said application at least in part on said server and/or on
said device, by evaluating (i.e. checking) the offload
rules applied to said device profile, application profile
and device metrics.

10

15

20

30

35

40

45

50

55

60

65

2

By doing so, an embodiment of the disclosure can take
benefit of the resources of the remote server in addition to the
resources of the device itself.

The possibility of dynamic distribution of the application
running adds more flexibility to the prior art situation men-
tioned above.

This flexibility is made even higher due to the fact that, for
decision making, it is taken account of:

resource capacity characteristics of said device via the

device profile, so that the decision made is adapted to the
type of the device; this is advantageous compared to a
fixed and unique decision algorithm, because the latter
may be adapted e.g. for features phones which have
enough CPU, power and storage space to run high-de-
manded services like gaming, but not to low-end devices
where resources are limited in terms of CPU, memory
and battery capacity, or vice-versa;

resource consumption characteristics of the application via

the application profile, so that the decision made is
adapted to the type of the application; this is advanta-
geous compared to a fixed and unique decision algo-
rithm, because different applications may need more or
less CPU, power, network bandwidth and storage space
for example; and

device metrics relating to real-time resource usage with

respect to the device, so that the decision made is
adapted to the real-time situation of the device in terms
of resource usage; this is advantageous compared to a
fixed and unique decision algorithm, because even for a
given device type, the CPU, power and storage usage of
a device may vary in time such that the device may be
capable of running an application alone at a given time,
but not at a later time while other applications are
already running in the background for example.

A benefit for the device user is to have a better QoS (in
particular a better response time) when the device is in an
overload state for example. A benefit for the network operator
is to extend at some levels the low-end device capabilities in
order to provide to its customers value-added services, which
are more designed to run on features phones.

Theuse of an inference engine allows the above-mentioned
flexibility. It also facilitates implementation compared to a
fixed decision algorithm, as it can tolerate updates, modifica-
tions and additions in any of the offload rules, device profile
and application profile. For example, when a new application
is developed and downloaded by the device, a corresponding
application profile can also be downloaded and used imme-
diately in the decision making process. The inference engine
adapts itself to this new situation, without the need to change
a decision algorithm substantially. In another scenario, the
offload rules may be modified, for example due to a subscrip-
tion upgrade by the device user, without the need for a sub-
stantial and visible operation to be performed on the device.

According to advantageous further aspects of the disclo-
sure that may be combined in any possible manner:

the application profile is built by a pre-processing unit

arranged for performing analysis of a code of said appli-
cation; the analysis can comprise a semantic analysis or
other kind of code analysis;

the application profile is received responsive to the device

requesting downloading of said application; in this way,
the device does not have to store profiles for applications
it does not need;

the device is provided with the offload rules by an operator

of the network; in this way, the operator controls the
occupation of the server and device and may easily
update the offload rules;

US 9,323,583 B2

3

the offload rules depend on a type of subscription a user of
the device has with the network; in this way, better
performance can be offered to device users having high-
level subscriptions;

the device is provided with the device profile by a manu-
facturer of the device; the manufacturer knows well the
device characteristics and can thus build the device pro-
file;

device resource capacity, application resource consump-
tion and/or device real-time resource usage relate to at
least one of the following resource: processing resource,
random access memory, storage memory, power and
network bandwidth; other resource type may also be
envisaged instead or in addition;

the method further comprises, when the decision made by
the inference engine is to run at least part of said appli-
cation on the server, offloading said application part to
the server;

offloading said application part to the server is performed
by taking into account on which conditions defined by
the offload rules the decision to run said application part
on the server was made by the inference engine; in this
way, offloading may take different forms depending on
the cause that provoked it.

An embodiment of the disclosure also proposes a device
for allowing distributed running of an application between the
device itself and a server connected to the device via a net-
work. The device comprises:

a unit for obtaining a device profile including resource

capacity characteristics of said device;

a unit for obtaining an application profile including
resource consumption characteristics of said applica-
tion;

a unit for obtaining device metrics relating to real-time
resource usage with respect to said device;

aunit for obtaining offload rules defining conditions under
which an application is to be run at least in part on a
server and/or on a device, the conditions involving
device resource capacity, application resource con-
sumption and device real-time resource usage;

an inference engine for making a decision to run said
application at least in part on said server and/or on said
device, by evaluating the offload rules applied to said
device profile, application profile and device metrics.

An embodiment of the disclosure also proposes an infer-
ence engine for use in cooperation with a device arranged for
allowing distributed running of an application between the
device itself and a server connected to the device via a net-
work and comprising a unit for obtaining a device profile
including resource capacity characteristics of said device, a
unit for obtaining an application profile including resource
consumption characteristics of said application, a unit for
obtaining device metrics relating to real-time resource usage
with respect to said device, and a unit for obtaining offload
rules defining conditions under which an application is to be
run at least in part on a server and/or on a device, the condi-
tions involving device resource capacity, application resource
consumption and device real-time resource usage. The infer-
ence engine is arranged for making a decision to run said
application at least in part on said server and/or on said
device, by evaluating the offload rules applied to said device
profile, application profile and device metrics.

The features of the above aspects which are indicated by
the dependent claims may be combined as appropriate, and
may be combined with any of the above aspects of the dis-
closure, as would be apparent to a person skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is ablock diagram showing steps carried out accord-
ing to an exemplary embodiment of the disclosure;

10

15

20

25

30

35

45

50

55

60

65

4

FIG. 2 is a schematic view of data-driven decision making
performed by means of an inference engine according to an
exemplary embodiment of the disclosure;

FIG. 3 is a schematic view procedural-control decision
making performed by means of a traditional fixed hard-coded
decision tree algorithm.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

FIG. 1 shows a device 102 which can be any type of
communication device, such as a laptop, a desktop, a mobile
phone, a smartphone, a personal digital assistant, a tablet
computer, etc.

FIG. 1 also shows a server 103 which can be any type of
device or system including computing means, such as a com-
puter, a set of interconnected computers (cloud computing),
etc. The server 103 may act as a server with respect to the
client device 102 if application offloading is to take place
finally as will be discussed later. But the use of the functional
term “server” does not limit the physical nature of the server
103, which can be of the same type as the device 102 or of'a
different type. Advantageously, the server 103 offers more
resource than the device 102 in terms of any one of: process-
ing resource, random access memory, storage memory, power
and network bandwidth.

The device 102 and the server 103 are connected to each
other via a network 104, which can take any possible form,
such as a fixed network (e.g. PSTN), a cellular network (e.g.
GSM, UMTS, LTE), another type of radiocommunication
network (e.g. Wifi), an IP network, a combination of any one
of the preceding networks, etc. This supposes that the device
102 and the server 103 have appropriate means to communi-
cate with each other in a way that is suitable with respect to the
network 104, as is conventional.

At some point in time, the device 102 or its user may wish
to run an application A 100 that will provide a respective
service. But before that (and even irrespective of whether the
device 102 will ever run the application), a pre-processing
unit PPU 101 may work on the application code as follows.

The pre-processing unit PPU 101 can consist in any type of
device or system. It may also be part of a more complex
device or system. As a non-limiting example, the pre-process-
ing unit may be a software or hardware module in a computer.

The pre-processing unit PPU 101 holds a code of the
above-mentioned application A 100, containing all the
instructions to carry out the application when run on a device.
This application code is for example the source code of said
application. In this case, any suitable computer language may
be used for the source code (C, C++, Java, etc.). Several
source codes in different languages may even be used by the
pre-processing unit PPU 101 for the same application. Alter-
natively, the application code may be the binary code of said
application, or other. The application code may be stored on
the pre-processing unit PPU 101 directly, or the latter may
receive it from any other device or system storing the appli-
cation code (reference 120), such as an application store
platform.

In step 106, the pre-processing unit PPU 101 generates
from the application code an application profile AP 107
including resource consumption characteristics of the appli-
cation A 100. This generation 106 can be performed through
analysis of the application code. The analysis can for example
include a semantic analysis of the source code language, e.g.
by means of'the L.ex & Yacc analyzer or any other appropriate
analyzer. In this case, one pre-processing unit may be needed
for each programming language such as Java, C, C++, others.
For example, the amount of RAM needed could be guessed
from the memory allocation functions (ex in C: malloc()),
specific scalar data types (ex: pointer or table variables).

US 9,323,583 B2

5

Lex & Yacc is a set of tools which help to manipulate
grammars (ex: in our case, a grammar is a programming
language: C, C++, Java, others). It is used to develop compil-
ers and interpreters based on a lexical (“Lex™: stands for
“Lexical Analyzer Generator”) and a grammar (“Yacc™
stands for “Yet Another Compiler-Compiler™).

A compiler or interpreter for a programming language is
often decomposed into two parts:

Read the source program and discover its structure;

Process this structure, e.g. to generate the target program.

Lex & Yacc can generate program fragments that solve the
first task. The task of discovering the source structure again is
decomposed into subtasks:

Split the source file into tokens (“Lex”);

Find the hierarchical structure of the program (“Yacc™).

More detail on Lex & Yacc can be found for example at the
following Web page addresses: http://dinosaur.compilertool-
s.net/#overview and http://www.irit.fr/~Martin. Strecker/
Teaching/2004/M1_S8_IUP_ISI_Traduction/intro_lex_yac-
c.pdf.

The software coupling level could be guessed from the
procedure call locations: we can identify procedure or func-
tions which are more/less coupled together, then more or less
able to be offloaded on the network. By doing so, the infer-
ence engine that will be discussed later may not offload code
parts with a high level software couple as it would generate
network traffics and thus delays in the service execution.

So, the application A 100 (as well as any other application)
can have its own resource consumption characteristics repre-
sented in a respective application profile AP 107. Note that the
application profile AP 107 may be built in any other possible
ways, which do not necessarily involve the pre-processing
unit PPU 101. For example, the application profile AP 107
may be provided by the developer of the application and
possibly attached to the application code.

The application profile AP 107 may be implemented with a
specific language compatible with the inference engine that
will be discussed later (Ex: LISP, Prolog, a description lan-
guage like XML, or other).

The resource consumption characteristics included in the
application profile AP 107 may relate to any one of the fol-
lowing resource: processing resource (e.g. CPU), random
access memory (RAM), power (e.g. a battery level), storage
memory (e.g. HDD, SD-card) and network bandwidth, or any
combination thereof, etc.

As non-limiting examples of resource consumption char-
acteristics, the application profile AP 107 may depict the
application A 100 in terms of any of: Minimum amount of
Mops (million operations per second)/Mips (Million instruc-
tions per second) needed to run the application with a good
QoS, Amount of RAM used, Amount of storage used, etc.

Those resource consumption characteristics may be
expressed with respect to a specific device type, such as the
device 102. For instance, the application A 100 could be
assumed to consume 20% of the total RAM capacity of the
device 102 if run on that device. Alternatively, the resource
consumption characteristics may be expressed with respectto
a generic device with generic or unspecified resource charac-
teristics (i.e. with no consideration of the device(s) on will the
application A 100 may be run in the future).

As different applications will generally not have the same
resource consumption characteristics, the inference engine
will have different decision making from one application to
another as will appear more clearly in the further description
of the inference engine.

At some point in time, the device 102 obtains the applica-
tion profile AP 107. It may for example be received from the
pre-processing unit PPU 101 (reference 110). Alternatively, it
may receive it from any other device or system, such as an
application store platform. Advantageously, the application

10

15

20

25

30

35

40

45

50

55

60

65

6

profile AP 107 may be received responsive to the device 102
requesting downloading of said application. In this way, the
device 102 does not unnecessarily store application profiles
for applications it will never dowload. In this case, the appli-
cation profile AP 107 may be received together with the
application code itself (e.g. in a software package). Any other
way for obtaining the application profile AP 107 may be
implemented instead or in addition, as will appear to one
skilled in the art.

The device 102 also obtains a device profile DP 108 includ-
ing resource capacity characteristics of said device 102 (ref-
erence 111).

The device profile DP 108 may be implemented with a
specific language compatible with the inference engine that
will be discussed later (Ex: LISP, Prolog, a description lan-
guage like XML, or other).

The resource capacity characteristics included in the
device profile DP 108 may relate to any one of the following
resource of the device 102: processing resource (e.g. CPU),
random access memory (RAM), power (e.g. a battery level),
storage memory (e.g. HDD, SD-card) and network band-
width, or any combination thereof, etc.

As non-limiting examples, the device profile DP 108 may
depict the resource capacity characteristics of the device 102
in terms of any of: CPU power capacity in Mips or Mops, total
RAM amount, local storage capacity, network type available
(from which a network bandwidth may be derived), battery
capacity (in hours/min), etc.

As devices of different types will generally not have the
same resource capacity characteristics, the inference engine
will have different decision making from one device to
another as will appear more clearly in the further description
of the inference engine.

The device 102 may obtain the device profile DP 108 in any
possible way. For example, it may be provided by the manu-
facturer of the device 102, by storing it in a memory at the
time of manufacturing the device 102, by further download-
ing, or other.

The device 102 also obtains device metrics DM 114 relat-
ing to real-time resource usage with respect to the device 102.
Those metrics may be obtained in any suitable way, for
example from measurements carried out at least in part by the
device 102 itself. They may checked on a regular basis or at
specific times (e.g. when the inference engine must make an
offload decision). Note that the device metrics DM 114 may
relate to real-time resource availability rather than usage,
which is strictly equivalent.

Like for the resource consumption and resource capacity
characteristics mentioned above, the real-time resource usage
included in the device metrics DM 114 may relate to any one
of the following resource: processing resource (e.g. CPU),
random access memory (RAM), power (e.g. a battery level),
storage memory (e.g. HDD, SD-card) and network band-
width, or any combination thereof, etc.

For example, the device metrics DM 114 may include any
of: the current CPU load (or the free CPU) on the device 102,
the RAM used (or available) on the device 102, the local
occupied (or free) storage space on the device 102, the current
used (or available) network bandwidth with respect to the
device 102, etc.

Other metrics OM 115 may be used in addition to the
device metrics DM 114, so as to enrich the decision making.
Some example of such metrics may include: location aware-
ness, current available signal strength received by the device
102 from the network 104, current offload delay, etc.

Finally, the device 102 obtains offload rules OR 109 (ref-
erence 112). Those offload rules define conditions under
which anapplication is to be run atleast in part ona server (i.e.
remotely) and/or on a device (i.e. locally), the conditions

US 9,323,583 B2

7

involving at least device resource capacity, application
resource consumption and device real-time resource usage.

A non-limiting example of offload rules is given below for
illustrative purpose. One skilled in the art will understand
than any other set of offload rules may be used instead or in
addition to the following.

In this offload rules example, the parameters relating to
device resource capacity are indicated in bold characters, the
parameters relating to application resource consumption are
indicated in underlined characters, and the parameters relat-
ing to device real-time resource usage are indicated with
dashed underlined characters. Some categories appear in
comments using italic characters:

// Basic information
Offload delay (s) = amount of code to offload from the application(i)
(Kbytes) / current network rate (Kbytes/s)
- MAX_DELAY = 30s
- Others
// Reasons to activate the offload mechanism for one particular service /
application based on the application and device profiles matching (it
identifies potential applications which could generate a device overload)
- If (CPU needed for the application(i) >= 50% CPU capacity) =>
cpu_offload = true.
- If (RAM needed for the application(i) >= 50% RAM capacity) =>
ram_oftload = true.
If (Storage space used for the application(i) >= 10% local storage
capacity) => storage_oftload = true.
// Reasons to activate the offload mechanism for one particular service /
application based on the device metrics (real time used or available
resources)
- If (CPU load >= 80% CPU capacity) => cpu_oftload = true.
- If (RAM used >= 80% RAM capacity) => ram_ofHoad = true.
- If (local storage used > 80% local storage capacity) =>
storage_offload = true.
- If (cpu_oftload = true) OR (ram_offload = true) OR (storage_oftload =
true) => activate oftfload = true.
- Others
// Reasons not to activate the offload mechanism for one particular
service / application because of network, battery or other constraints
- If (activate_offload = true) AND (offload delay > MAX_DELAY (s)) =>
activate_offload = false.
- If (activate_offload = true) AND (network signal strength <= xx
(dB)) => activate_offload = false.
- If (activate_offload = true) AND (network bandwidth. <= yy (MHz)) =>
activate_offload = false.
- If (activate_offload = true) AND (network rate <= zz (Kbytes/s)) =>
activate_offload = false.
- If (activate_offload = true) AND (battery level <= 20%) =>
activate_offload = false.
- Others

Note that in this offload rules example, several boolean
variables (cpu_offload, ram_offload, storage_offload) are
used in relation with respective causes for an offload (insuf-
ficient CPU, RAM or storage).

Note also that all the conditions defined in the above oft-
load rules example are listed in a determined order, but this
order may not be respected when checking whether some or
all those conditions are satisfied with respect to a given device
and a given application.

The device 102 may obtain the offload rules OR 109 in any
possible way. As an example, it may be provided with the
offload rules by an operator of the network 104. The operator
can thus control distribution of application running between
devices and servers.

The offload rules OR 109 may be the same for every appli-
cation and every device or they may depend on certain factors.
For example, they may depend on a type of subscription auser
of'the device 102 has with the network. In this way, a premium
subscriber may benefit from a remote running capacity
greater than a normal subscriber for instance. Other scenarios
and factors may be envisaged for the offload rules OR 109, as
will appear to one skilled in the art. As an example, the offload

10

15

20

25

30

35

40

45

50

55

60

65

8

rules OR 109 may vary in time, for example to allow the
network operator to adapt occupation of the server 103 to the
amount of requests received from devices, the number of
applications downloaded, etc.

As shown in FIG. 1, the device 102 further comprises an
inference engine IE 113. The latter can take any possible
form, such as a software and/or hardware component in the
device 102. The inference engine IE 113 is in charge of
making a decision as to whether an application must be run
completely locally on the device 102, completely on the
remote server 103 (offload), or partly on the device 102 and
partly on the server 103 (partial offload).

The decision is made by the inference engine IE 113 by
evaluating the offload rules OR 109 applied to the device
profile DP 108, the application profile AP 107 and the device
metrics DM 114, as well as possible other characteristics such
as the other metrics OM 115.

To do so, the inference engine IE 113 gets the device profile
DP 108, the application profile AP 107 and the device metrics
DM 114 obtained by the device 2. This can be done on a
regular basis or when the application A 100 is run or about to
be run, for example upon request by the device user. Note that
not all the offload rules OR 109 may be evaluated at the same
time: all or part of the offload rules independent of the device
metrics DM 114 may be evaluated in advance (e.g. as soon as
the application A 100 is deployed on the device 102), while all
or part of the offload rules depending on the device metrics
DM 114 may be evaluated when the application A 100 is be
run or has started running on the device 102. Different time
frames may also be envisaged, as will appear to one skilled in
the art.

For example, with regard to the above mentioned non-
limiting example of offload rules OR 109, the inference
engine IE 113 may replace all or part of the parameters
relating to device resource capacity, application resource con-
sumption and device real-time resource usage by the corre-
sponding values included in the device profile DP 108, appli-
cation profile AP 107 and the device metrics DM 114
respectively.

In normal mode where the application A 100 can be cor-
rectly run with the CPU, RAM, storage and/or other resources
available on the device 2, the inference engine would not find
any offload actions to do.

The conclusion would be different however in an over-
loaded context. Let us assume for example that the resource
asked by the application A 100 cannot be fulfilled from the
device resources currently available. This could happen e.g.
when the device resources are completely used and cannot be
free at all (ex: local storage is full) or some device resources
are used in their maximum capacity for a limit amount of time
(ex: a gaming application is using 90% of the CPU during few
seconds). From the device metrics, the inference engine IE
113 will automatically generate the right offload action to be
done, because of this resource gap. It could be either e.g. a
storage offload (i.e. an offload due to insufficient storage
available) because the local storage is full, or a RAM or CPU
offload (i.e. an offload due to insufficient CPU or RAM avail-
able) because the RAM or CPU remaining capacity is low
(ex: too much background process). Offloading at least part of
the application A 100 to the server 103 may thus be performed
by taking into account on which conditions defined by the
offload rules OR 109 (storage, CPU, RAM, etc.) the decision
to run said application part on the server 103 was made by the
inference engine IE 113.

To make a decision, the inference engine IE 113 may
advantageously be based on a forward chaining approach. In
such approach, data get put into working memory. This trig-
gers rules whose conditions match the new data. These rules
then perform their actions. The actions may add new data to
memory, thus triggering more rules. And so on. This is also

US 9,323,583 B2

9

called data-directed inference, because inference is triggered
by the arrival of new data in working memory. As far as the
inference engine [E 113 is concerned, the decisions may thus
be made based on facts from the device metrics DM 114.

The device profile DP 108, the application profile AP 107,
the offload rules OR 109 and the device metrics DM 114
should preferably be consistent enough in order to generate
consistent decisions from the inference engine IE 113. Deci-
sion making should advantageously be compatible with the
overload context of mobile devices.

The inference engine IE 113 may use data-driven decision
making. The inference engine control is thus based on the
frequent re-evaluation of the data states (device metrics <->
offload rules), not on any static control structure of the pro-
gram (which is the case of a fixed hard coded decision tree
algorithm). The sequence of steps taken to make a decision is
dynamically synthesized with each new case (ex: from real-
time device metrics).

The inference engine IE 113 may process multiple values
for any problem parameter. This permits more than one line of
reasoning to be pursued (vs. the classic fixed hard coded
approach where only one branch could be pursued at a time).

It is not explicitly programmed when the system is built.
The computation is often qualified as data-driven or pattern-
directed in contrast to the more traditional procedural control.
Rules can communicate with one another only by way of the
data, whereas in traditional programming languages, proce-
dures and functions explicitly call one another. Unlike
instructions (ex: hard coded decision tree), rules are not
executed sequentially and it is not always possible to deter-
mine through inspection of a set of rules which rule will be
executed first or cause the inference engine to terminate.

In contrast to a procedural computation, in which knowl-
edge about the problem domain is mixed in with instructions
about the flow of control (ex: hard coded decision tree), the
inference engine model allows a more complete separation of
the knowledge (in the rules) from the control (the inference
engine).

The way the inference engine IE 113 evaluates the set of
rules (here the offload rules OR 109) introduces more flex-
ibility in the way to generate offload decisions. This means
that from one application to another and from one device to
another, we will not have the same offload decisions as they
are data-driven (or pattern driven). This data are represented
by the application and device profiles.

Thus, using the inference engine IE 113 for the offload
decision making will be driven by the device and application
profiles and not by a classic procedure control (ex: a hard
coded decision tree). This is introducing flexibility for the
offload decision making, based on the device and application
characteristics (represented by the device and application
profiles).

The inference system approach is interesting as the deci-
sion making can be described in terms of boolean rules
located in files. This is easier to maintain as rules could be
changed from the files instead of directly change the decision
algorithm source code and then compile it—which is not a
good solution for a market deployment. It is also a more
generic approach in order to adapt the decision algorithm to
other factors or new metrics introduced in the system.

FIGS. 2 and 3 show how such decision making mecha-
nisms (data-driven vs. procedural-control) could lead to dif-
ferent decisions.

FIG. 2 relates to data-driven decision making performed by
means of the above mentioned inference engine IE 113 based
at least on the device profile DP 108, the application profile
AP 107, the offload rules OR 109 and the device metrics DM
114.

The data-driven decision making is illustrated with refer-
ence 121, in which the empty circles relate to inactivated rules

10

15

25

30

35

45

50

55

60

65

10

among the offload rules OR 109, while the circles filled with
Ni reference relate to rules activated at the i iteration among
the oftload rules OR 109 (here with i being an integer between
1 and 5). All the offload rules OR 109 are re-evaluated at each
iteration of the inference engine IE 113.

As shown in the example of FIG. 2, multiple “branches”
can be evaluated in parallel (see e.g. N2).

In this example, the device metrics DM 114 provided to the
inference engine IE 113 lead to the “No offload” decision.

In contrast, FIG. 3 relates to procedural-control decision
making performed by means of hard-coded decision tree
algorithm DTA 123 based on device metrics DM' 124, with
respect to a given device and a given application.

This implementation may rely on a sequential evaluation of
offload rules (N1, N2, N3, N4 are on different levels of the tree
122). Thus, the rule order impacts the decision results.

Also, only one rule can be “activated” at a time and only
one “branch” can be followed at a time.

In the example of FIG. 3, a “RAM offload” decision is
made, in contrast with the ‘“No offload” decision of FIG. 2.

So, even if both decision mechanisms relate to the same
device type and to the same application, the way the decision
is implemented may lead to completely different offload deci-
sions.

Offload decisions made according to procedural-control
process are much less flexible compared to the data-driven
decision shown in FIG. 2.

The procedural-control way of implementing a decision
making system could fit to a specific device type and for a
specific application type (high demand CPU applications,
high demand RAM applications, etc.). But, it could not adapt
itself to other kinds of device types and application types. For
example, if such a system is deployed on a completely difter-
ent device type (low-end device instead of a smartphone) with
different application types (high demand CPU applications
such as gaming), the decisions generated will be completely
inappropriate compared to the context.

Inthe other hand, a data-driven decision system such as the
one of FIG. 2 can lead to appropriate offload decisions in all
circumstances and adapt itself to the device and application
characteristics with the help of the profiles.

For illustration purpose, non-limiting examples of offload
decisions that can be made by the inference engine IE 113 will
be described hereafter.

According to a first example, it is assumed that the device
profile DP 108 indicates a CPU capacity of 2 Mops for the
device 102 and that the application profile AP 107 indicates
that the application A 100 has a CPU need of 4 Mops. This
scenario corresponds to a request for running a high-demand
CPU application on a low-end device.

When the application A 100 needs to be run or at any
previous point in time (e.g. when the application A 100 is
deployed on the device 102), the inference engine 113 iden-
tifies it as a potential high-demand application in terms of
CPU. Withrespect to the above mentioned example of offload
rules OR 109, this can be achieved by considering that the
offload criterion “CPU needed for the application(i)>=50%
CPU capacity” is satisfied.

When the application A 100 is about to be run or has started
running on the device 102, the inference engine 113 detects
that the CPU load is very high because for example of other
applications which are running in the background at the same
time. This can be achieved based on the above mentioned
offload criterion “CPU load>=80% CPU capacity”.

Then offload due to CPU overload can be activated (as the
boolean variable cpu_offload is assigned the value “true’) and
the current network characteristics are checked with respect
to the device 102 (from the device metrics DM 114) in order
to know if it is worth doing the application oftload later or
now. This can be achieved for example by checking whether

US 9,323,583 B2

11

the above mentioned criteria
DELAY (s)” is satisfied or not.

According to a second example, it is assumed that the
device profile DP 108 indicates a CPU capacity of 10 Mops
for the device 102 and that the application profile AP 107
indicates that the application A 100 has a CPU need of 4
Mops. This scenario corresponds to a request for running a
high-demand CPU application on a smartphone for example.

In this scenario, the application A 100 is not identified as a
potential high-demand service in terms of CPU (“CPU
needed for the application(i)>=50% CPU capacity” is false).
And when the application is about to run or is running on the
device 102, the CPU load may remain at an acceptable level
(“CPU load>=80% CPU capacity” is false).

In this case, there will be no offload activation as the CPU
load level is OK compared to the smartphone capabilities.

According to a third example, it is assumed that the device
profile DP 108 indicates a RAM capacity of 1 Mbyte.

On the other hand, many applications are running on the
device 102 in the background.

In this scenario, the inference engine IE 113 identifies no
application as a potential high-demand application. But, more
than one lightweight application is running in the back-
ground, which affects considerably the device capability to
cope with all these applications in parallel. From the device
metrics DM 114, one rule is becoming “true” from the set of
offload rules OR 109, namely “RAM used>=80% RAM
capacity”. This is enough to activate the RAM oftloading
process for one or several of the applications which are run-
ning.

The RAM offload will also depend on the network capacity
to do it currently (“offload delay>MAX_DELAY (s)” crite-
rion).

Back to FIG. 1, once the inference engine IE 113 has made
adecision D 116 to run the application A 100 at least partially
on the server 103 (offload) or completely on the device 102,
this decision D 116 may be sent to an application broker AB
117, which is advantageously embedded in the device 102
e.g. as a hardware and/or software component.

The application broker AB 117 is in charge of applying the
decision D 116 from the inference engine IE 113 to the target
application A 100 which is running or about to run on the
device 102.

So the application broker AB 117 ensures that, depending
on the decision D 116 made by the inference engine IE 113,
the application A 100 is run fully on the device 102 (reference
118), offloaded fully to the server 103 via the network 104
(reference 119), or run partly on the device 118 and partly on
the server 103.

The mechanism used for offloading at least part of the
application A 100 to the server 103 so that the latter runs it can
take any possibly form. As non-limiting examples, it may
make use of at least one of the conventional following tech-
niques: Device Virtualization layer, the OS itself, Remote
Procedure Call (RPC), Object serialization, etc. Depending
on the selected mechanism, only short calls or substantial
application code parts may be transmitted from the device
102 to the server 103.

I, as mentioned earlier, the decision D 116 depends on a
specific condition defined in the offload rules OR 109 (i.e. on
a specific cause for the offload), such as RAM offload, CPU
offload or Storage offload, the application broker AB 117 may
take that into account for offloading.

In this way, the offload typology may imply different oft-
load mechanisms.

For example if the application A 100 must be offloaded on
the server 103 in order to free CPU load on the device 102, the
offload process should preferably be transparent for the user
and should preferably not impact the other applications run-
ning on the same device.

“offload delay>MAX_

10

15

20

25

30

35

40

45

50

55

60

65

12

Several solutions could be used in order to implement the
application broker component AB 117. For example:

The OS application scheduler could be updated from the
OS kernel source code in order to be able to oftload the
application A 100 running on the device, to the specific
server 103—in a transparent manner for the user of the
device 102. The application lifecycle will be impacted
and could have a least one added state which would be
“Oftloaded”. Such application state means that it will
run on the server-side as long as the device 102 is in
overloaded context. The application will be restored on
the device 102 as soon as there are enough resources to
run it locally.

Device virtualization techniques: it adds another software
layer between the hardware and the OS on mobile
devices in order to be able to “virtualize” any device
resources (ex: RAM, storage, CPU, others). By doing
that, device resources could be extended on-demand in a
seamless manner (no application impacts, no user expe-
rience impacts).

Whatever the solution chosen for the application broker
component AB 117 (updated OS, device virtualization or
other solutions), the server side should be able to run devices
applications, whatever the OS may be. Several OS emulators
(ex: Android, Symbian, others) may be needed on the server
103 in order to run device applications in the same context as
locally on the device.

Note that all the functions described so far may be carried
out in various ways. They may be carried out by different
units or entities, possibly in a different manner from the one
described above, as one skilled in the art will realize. As an
example, the functions performed by the pre-processing unit
PPU 101, the inference engine IE 113, the application broker
component AB 117 may be carried out by entities embedded
in other devices or systems as the ones mentioned above, or
even distributed between several devices or systems.

All or part of the functions described so far may also be
carried out by means of computer programs including appro-
priate code instructions as will appear to one skilled in the art.
These computer programs can be stored on non-transitory
computer-readable media, for example, and when executed
by a computer perform one or more of the method steps
described herein.

Although the present disclosure has been described with
reference to one or more examples, workers skilled in the art
will recognize that changes may be made in form and detail
without departing from the scope of the disclosure and/or the
appended claims.

We claim:
1. A method for allowing distributed running of an appli-
cation between a device and a server connected via a network,
the method comprising the following steps carried out by the
device:
obtaining, by said device, a device profile including
resource capacity characteristics of said device;

obtaining, by said device, an application profile including
resource consumption characteristics of said application
before said application is run;

obtaining, by said device, device metrics relating to real-

time resource usage with respect to said device;
obtaining, by said device, offload rules defining conditions
under which said application is to be run at least in part
on said server and/or on said device, the conditions
involving device resource capacity, application resource
consumption and device real-time resource usage;
making a decision, by an inference engine of said device, to
run said application completely locally on said device,
completely remotely on said server or partially on said
device and partially on said server, by evaluating the

US 9,323,583 B2

13

offload rules applied to said device profile, application
profile and device metrics; and

controlling distribution of the application running between

the device and the server based on said decision.

2. The method as claimed in claim 1, wherein the applica-
tion profile is obtained from a pre-processing unit arranged
for performing analysis of a code of said application.

3. The method as claimed in claim 1, wherein the applica-
tion profile is received responsive to the device requesting
downloading of said application.

4. The method as in claim 1, wherein the device is provided
with the offload rules by an operator of the network.

5. The method as claimed in claim 4, wherein the offload
rules depend on a type of subscription a user of the device has
with the network.

6. The method as claimed in claim 1, wherein the device is
provided with the device profile by a manufacturer of the
device.

7. The method as claimed in claim 1, wherein device
resource capacity, application resource consumption and/or
device real-time resource usage relate to at least one of the
following resources: processing resource, random access
memory, storage memory, power or network bandwidth.

8. The method as claimed in claim 1, further comprising,
when the decision made by the inference engine is to run the
at least part of said application on the server, offloading said
application part to the server.

9. The method as claimed in claim 8, further comprising a
plurality of different forms of offloading, wherein each of the
different forms of offloading corresponds to a different one of
the conditions defined by the offload rules or corresponds to a
different combination of multiple ones of the conditions
defined by the offload rules, and wherein offloading the at
least part of said application to the server is performed by one
of'the different forms of offloading that corresponds to one or
more of the conditions, defined by the offload rules, that
provoked the inference engine to make the decision to run the
at least part of said application on the server.

10. The method as claimed in claim 1, wherein the resource
consumption characteristics included in the application pro-
file are generated at least in part by analyzing a source code
language of said application.

11. The method as claimed in claim 10, wherein analyzing
the source code language of said application comprises per-
forming a semantic analysis of the source code language of
said application.

12. The method as claimed in claim 1, wherein the appli-
cation profile is built prior to execution of the application on
at least one of the device or the server.

13. A device for allowing distributed running of an appli-
cation between the device and a server connected via a net-
work, the device comprising:

10

15

20

30

40

45

14

an inference engine configured to:

receive a device profile including resource capacity
characteristics of said device;

receive an application profile including resource con-
sumption characteristics of said application;

receive device metrics relating to real-time resource
usage with respect to said device;

receive offload rules defining conditions under which
said application is to be run at least in part on said
server and/or on said device, the conditions involving
device resource capacity, application resource con-
sumption and device real-time resource usage,
wherein the offload rules depend on a type of sub-
scription a user of the device has with the network;

make a decision to run said application at least in part on
said server and/or on said device, by evaluating the
offload rules applied to said device profile, applica-
tion profile and device metrics; and

control distribution of the application running between
the device and the server based on said decision.

14. The device of claim 13, wherein the type of subscrip-
tion that the user of the device has with the network comprises
one of a plurality of subscription types, wherein each of the
plurality of subscription types has a different remote running
capacity for running said application.

15. A non-transitory computer-readable medium, storing
instructions of an inference engine to implement a method for
allowing distributed running of an application between a
device and a server connected via a network, when the
instructions are executed by a computer, wherein the method
comprises:

obtaining a device profile including resource capacity char-

acteristics of said device;

obtaining an application profile including resource con-

sumption characteristics of said application before said
application is run;

obtaining device metrics relating to real-time resource

usage with respect to said device;

for obtaining offload rules defining conditions under which

said application is to be run at least in part on said server
and/or on said device, the conditions involving device
resource capacity, application resource consumption
and device real-time resource usage;

making a decision to run said application completely

locally on said device, completely remotely on said
server or partially on said device and partially on said
server, by evaluating the offload rules applied to said
device profile, application profile and device metrics;
and

controlling distribution of the application running between

the device and the server based on said decision.

#* #* #* #* #*

